Expression and regulation of a disintegrin and metalloproteinase (ADAM) 8 in experimental asthma.
نویسندگان
چکیده
Asthma, a complex chronic inflammatory pulmonary disorder, is on the rise despite intense ongoing research. To elucidate novel pathways involved in asthma pathogenesis, we used transcript expression profiling in a murine model of asthma. Employing asthma models induced by different allergens (ovalbumin and Aspergillus fumigatus) we uncovered the involvement of ADAM8, a member of a disintegrin and metalloproteinase (ADAM) family. In situ hybridization of mouse lungs revealed strong ADAM8 induction in peribronchial and perivascular inflammatory cells as well as in bronchiolar epithelial cells following allergen challenge. Sequence analysis of lung ADAM8 cDNA identified a novel splice variant of ADAM8 that contained an additional exon in juxtaposition to the transmembrane domain. Allergen-induced ADAM8 mRNA accumulation in the lung was dose- and time-dependent. Transgenic or pharmacologic delivery of interleukin (IL)-4 or IL-13 to the lungs resulted in a marked increase of ADAM8 expression. Gene-targeted mice studies revealed that ovalbumin-induced ADAM8 was largely dependent upon signal transducer and activator of transcription (STAT) 6 and the IL-4 receptor alpha-chain. Thus, ADAM8 is an allergen-, IL-4-, and IL-13-induced gene in the experimental asthmatic lung. Taken together with the role of ADAM33 in asthma, these results suggest that allergic lung responses involve the interplay of diverse members of the ADAM family.
منابع مشابه
Upregulation of a disintegrin and metalloproteinase-33 by VEGF in human airway smooth muscle cells: Implications for asthma
Asthma is a chronic respiratory disease characterized by reversible airway obstruction with persistent airway inflammation and airway remodeling. Features of airway remodeling include increased airway smooth muscle (ASM) mass. A disintegrin and metalloproteinase (ADAM)-33 has been identified as playing a role in the pathophysiology of asthma. ADAM-33 is expressed in ASM cells and is suggested t...
متن کاملExpression and regulation of the metalloproteinase ADAM-8 during human neutrophil pathophysiological activation and its catalytic activity on L-selectin shedding.
A disintegrin and metalloproteinase domain (ADAM) proteins are a family of transmembrane glycoproteins with heterogeneous expression profiles and proteolytic, cell-adhesion, -fusion, and -signaling properties. One of its members, ADAM-8, is expressed by several cell types including neurons, osteoclasts, and leukocytes and, although it has been implicated in osteoclastogenesis and neurodegenerat...
متن کاملAltered expression of ADAMs (A Disintegrin And Metalloproteinase) in fibrillating human atria.
BACKGROUND ADAMs (A Disintegrin And Metalloproteinase) are ectoproteases that have recently been reported to be expressed in cardiac tissue. Although they are known to regulate cell-cell and cell-matrix interactions, their pathophysiological role in various cardiac diseases is unclear. The purpose of the present study was to determine whether structural remodeling of the atria during atrial fib...
متن کاملADAM-8, a metalloproteinase, drives acute allergen-induced airway inflammation.
Asthma is a complex disease linked to various pathophysiological events including the activity of proteinases. The multifunctional A disintegrin and metalloproteinases (ADAMs) displaying the ability to cleave membrane-bound mediators or cytokines appear to be key mediators in various inflammatory processes. In the present study, we investigated ADAM-8 expression and production in a mouse model ...
متن کاملP 88: Matrix Metalloproteinases in Neuroinflammation
Matrix metalloproteinases (MMPs) are a family of neutral proteinases that are important in normal development, cellular differentiation or migration, angiogenesis, neurogenesis, wound repair, and a wide range of pathological processes such as oxidative stress and neuroinflammation. MMPs have been demonstrated to increase the permeability of the blood–brain barrier (BBB) by degrading the c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of respiratory cell and molecular biology
دوره 31 3 شماره
صفحات -
تاریخ انتشار 2004